Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Autoimmunity ; 57(1): 2330387, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38555866

RESUMO

Systemic lupus erythematosus (SLE) poses formidable challenges due to its multifaceted etiology while impacting multiple tissues and organs and displaying diverse clinical manifestations. Genetic and environmental factors contribute to SLE complexity, with relatively limited approved therapeutic options. Murine models offer insights into SLE pathogenesis but do not always replicate the nuances of human disease. This review critically evaluates spontaneous and induced animal models, emphasizing their validity and relevance to neuropsychiatric SLE (NPSLE). While these models undoubtedly contribute to understanding disease pathophysiology, discrepancies persist in mimicking some NPSLE intricacies. The lack of literature addressing this issue impedes therapeutic progress. We underscore the urgent need for refining models that truly reflect NPSLE complexities to enhance translational fidelity. We encourage a comprehensive, creative translational approach for targeted SLE interventions, balancing scientific progress with ethical considerations to eventually improve the management of NPSLE patients. A thorough grasp of these issues informs researchers in designing experiments, interpreting results, and exploring alternatives to advance NPSLE research.


Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Humanos , Animais , Camundongos , Vasculite Associada ao Lúpus do Sistema Nervoso Central/diagnóstico , Vasculite Associada ao Lúpus do Sistema Nervoso Central/terapia , Lúpus Eritematoso Sistêmico/terapia , Lúpus Eritematoso Sistêmico/tratamento farmacológico
2.
J Neuroinflammation ; 20(1): 238, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858232

RESUMO

BACKGROUND: Neovascular age-related macular degeneration causes vision loss from destructive angiogenesis, termed choroidal neovascularization (CNV). Cx3cr1-/- mice display alterations in non-classical monocytes and microglia with increased CNV size, suggesting that non-classical monocytes may inhibit CNV formation. NR4A1 is a transcription factor that is necessary for maturation of non-classical monocytes from classical monocytes. While Nr4a1-/- mice are deficient in non-classical monocytes, results are confounded by macrophage hyper-activation. Nr4a1se2/se2 mice lack a transcriptional activator, resulting in non-classical monocyte loss without macrophage hyper-activation. MAIN BODY: We subjected Nr4a1-/- and Nr4a1se2/se2 mice to the laser-induced CNV model and performed multi-parameter flow cytometry. We found that both models lack non-classical monocytes, but only Nr4a1-/- mice displayed increased CNV area. Additionally, CD11c+ macrophages were increased in Nr4a1-/- mice. Single-cell transcriptomic analysis uncovered that CD11c+ macrophages were enriched from Nr4a1-/- mice and expressed a pro-angiogenic transcriptomic profile that was disparate from prior reports of macrophage hyper-activation. CONCLUSIONS: These results suggest that non-classical monocytes are dispensable during CNV, and NR4A1 deficiency results in increased recruitment of pro-angiogenic macrophages.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Animais , Camundongos , Neovascularização de Coroide/genética , Modelos Animais de Doenças , Macrófagos/fisiologia , Degeneração Macular/genética , Camundongos Endogâmicos C57BL , Microglia , Monócitos
4.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37227784

RESUMO

Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding of how rejection occurs despite immunosuppression (IS). We performed combined single-cell RNA transcriptomic and TCR-α/ß sequencing on rBx from patients with ACR under differing IS drugs: tacrolimus, iscalimab, and belatacept. We found distinct CD8+ T cell phenotypes (e.g., effector, memory, exhausted) depending upon IS type, particularly within expanded CD8+ T cell clonotypes (CD8EXP). Gene expression of CD8EXP identified therapeutic targets that were influenced by IS type. TCR analysis revealed a highly restricted number of CD8EXP, independent of HLA mismatch or IS type. Subcloning of TCR-α/ß cDNAs from CD8EXP into Jurkat 76 cells (TCR-/-) conferred alloreactivity by mixed lymphocyte reaction. Analysis of sequential rBx samples revealed persistence of CD8EXP that decreased, but were not eliminated, after successful antirejection therapy. In contrast, CD8EXP were maintained in treatment-refractory rejection. Finally, most rBx-derived CD8EXP were also observed in matching urine samples, providing precedent for using urine-derived CD8EXP as a surrogate for those found in the rejecting allograft. Overall, our data define the clonal CD8+ T cell response to ACR, paving the next steps for improving detection, assessment, and treatment of rejection.


Assuntos
Transplante de Rim , Transcriptoma , Receptores de Antígenos de Linfócitos T alfa-beta/genética , RNA , Aloenxertos , Rejeição de Enxerto/genética
5.
Cell Rep ; 42(5): 112513, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37204925

RESUMO

Monocytes are abundant immune cells that infiltrate inflamed organs. However, the majority of monocyte studies focus on circulating cells, rather than those in tissue. Here, we identify and characterize an intravascular synovial monocyte population resembling circulating non-classical monocytes and an extravascular tissue-resident monocyte-lineage cell (TR-MC) population distinct in surface marker and transcriptional profile from circulating monocytes, dendritic cells, and tissue macrophages that are conserved in rheumatoid arthritis (RA) patients. TR-MCs are independent of NR4A1 and CCR2, long lived, and embryonically derived. TR-MCs undergo increased proliferation and reverse diapedesis dependent on LFA1 in response to arthrogenic stimuli and are required for the development of RA-like disease. Moreover, pathways that are activated in TR-MCs at the peak of arthritis overlap with those that are downregulated in LFA1-/- TR-MCs. These findings show a facet of mononuclear cell biology that could be imperative to understanding tissue-resident myeloid cell function in RA.


Assuntos
Artrite Reumatoide , Monócitos , Humanos , Monócitos/metabolismo , Membrana Sinovial , Inflamação/metabolismo
6.
Cells ; 12(5)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36899827

RESUMO

An acute inflammatory response following arterial surgery for atherosclerosis, such as balloon angioplasty, stenting, and surgical bypass, is an important driver of neointimal hyperplasia after arterial injury, which leads to recurrent ischemia. However, a comprehensive understanding of the dynamics of the inflammatory infiltrate in the remodeling artery is difficult to attain due to the shortcomings of conventional methods such as immunofluorescence. We developed a 15-parameter flow cytometry method to quantitate leukocytes and 13 leukocyte subtypes in murine arteries at 4 time points after femoral artery wire injury. Live leukocyte numbers peaked at 7 days, which preceded the peak neointimal hyperplasia lesion at 28 days. Neutrophils were the most abundant early infiltrate, followed by monocytes and macrophages. Eosinophils were elevated after 1 day, while natural killer and dendritic cells gradually infiltrated over the first 7 days; all decreased between 7 and 14 days. Lymphocytes began accumulating at 3 days and peaked at 7 days. Immunofluorescence of arterial sections demonstrated similar temporal trends of CD45+ and F4/80+ cells. This method allows for the simultaneous quantitation of multiple leukocyte subtypes from small tissue samples of injured murine arteries and identifies the CD64+Tim4+ macrophage phenotype as being potentially important in the first 7 days post-injury.


Assuntos
Artéria Femoral , Macrófagos , Camundongos , Animais , Hiperplasia , Citometria de Fluxo , Monócitos , Neointima
7.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36798151

RESUMO

Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding. We performed combined single cell RNA transcriptomic and TCRα/ß sequencing on rBx from patients with ACR under differing immunosuppression (IS): tacrolimus, iscalimab, and belatacept. TCR analysis revealed a highly restricted CD8 + T cell clonal expansion (CD8 EXP ), independent of HLA mismatch or IS type. Subcloning of TCRα/ß cDNAs from CD8 EXP into Jurkat76 cells (TCR -/- ) conferred alloreactivity by mixed lymphocyte reaction. scRNAseq analysis of CD8 EXP revealed effector, memory, and exhausted phenotypes that were influenced by IS type. Successful anti-rejection treatment decreased, but did not eliminate, CD8 EXP , while CD8 EXP were maintained during treatment-refractory rejection. Finally, most rBx-derived CD8 EXP were also observed in matching urine samples. Overall, our data define the clonal CD8 + T cell response to ACR, providing novel insights to improve detection, assessment, and treatment of rejection.

8.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36821388

RESUMO

Patients with neovascular AMD (nAMD) suffer vision loss from destructive angiogenesis, termed choroidal neovascularization (CNV). Macrophages are found in CNV lesions from patients with nAMD. Additionally, Ccr2-/- mice, which lack classical monocyte-derived macrophages, show reduced CNV size. However, macrophages are highly diverse cells that can perform multiple functions. We performed single-cell RNA-Seq on immune cells from WT and Ccr2-/- eyes to uncover macrophage heterogeneity during the laser-induced CNV mouse model of nAMD. We identified 12 macrophage clusters, including Spp1+ macrophages. Spp1+ macrophages were enriched from WT lasered eyes and expressed a proangiogenic transcriptome via multiple pathways, including vascular endothelial growth factor signaling, endothelial cell sprouting, cytokine signaling, and fibrosis. Additionally, Spp1+ macrophages expressed the marker CD11c, and CD11c+ macrophages were increased by laser and present in CNV lesions. Finally, CD11c+ macrophage depletion reduced CNV size by 40%. These findings broaden our understanding of ocular macrophage heterogeneity and implicate CD11c+ macrophages as potential therapeutic targets for treatment-resistant patients with nAMD.


Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Animais , Camundongos , Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Macrófagos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acuidade Visual , Degeneração Macular Exsudativa/patologia , Antígeno CD11c/metabolismo
9.
Arthritis Rheumatol ; 75(4): 595-608, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36281773

RESUMO

OBJECTIVE: Patients with diffuse cutaneous systemic sclerosis (dcSSc) display a complex clinical phenotype. Transcriptional profiling of whole blood or tissue from patients are affected by changes in cellular composition that drive gene expression and an inability to detect minority cell populations. We undertook this study to focus on the 2 main subtypes of circulating monocytes, classical monocytes (CMs) and nonclassical monocytes (NCMs) as a biomarker of SSc disease severity. METHODS: SSc patients were recruited from the Prospective Registry for Early Systemic Sclerosis. Clinical data were collected, as well as peripheral blood for isolation of CMs and NCMs. Age-, sex-, and race-matched healthy volunteers were recruited as controls. Bulk macrophages were isolated from the skin in a separate cohort. All samples were assayed by RNA sequencing (RNA-seq). RESULTS: We used an unbiased approach to cluster patients into 3 groups (groups A-C) based on the transcriptional signatures of CMs relative to controls. Each group maintained their characteristic transcriptional signature in NCMs. Genes up-regulated in group C demonstrated the highest expression compared to the other groups in SSc skin macrophages, relative to controls. Patients from groups B and C exhibited worse lung function than group A, although there was no difference in SSc skin disease at baseline, relative to controls. We validated our approach by applying our group classifications to published bulk monocyte RNA-seq data from SSc patients, and we found that patients without skin disease were most likely to be classified as group A. CONCLUSION: We are the first to show that transcriptional signatures of CMs and NCMs can be used to unbiasedly stratify SSc patients and correlate with disease activity outcome measures.


Assuntos
Esclerodermia Difusa , Esclerodermia Localizada , Escleroderma Sistêmico , Humanos , Monócitos/metabolismo , Escleroderma Sistêmico/metabolismo , Esclerodermia Difusa/genética , Esclerodermia Difusa/diagnóstico , Macrófagos/metabolismo , Biomarcadores , Pele/metabolismo
11.
Sci Rep ; 11(1): 18084, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508129

RESUMO

Neovascular age-related macular degeneration (nAMD) commonly causes vision loss from aberrant angiogenesis, termed choroidal neovascularization (CNV). Interleukin-6 (IL6) is a pro-inflammatory and pro-angiogenic cytokine that is correlated with AMD progression and nAMD activity. We hypothesize that anti-IL6 therapy is a potential nAMD therapeutic. We found that IL6 levels were increased after laser injury and expressed by macrophages. Il6-deficiency decreased laser-induced CNV area and exogenous IL6 addition increased choroidal sprouting angiogenesis. Il6-null mice demonstrated equally increased macrophage numbers as wildtype mice. At steady state, IL6R expression was detected on peripheral blood and ocular monocytes. After laser injury, the number of IL6R+Ly6C+ monocytes in blood and IL6R+ macrophages in the eye were increased. In human choroid, macrophages expressed IL6, IL6R, and IL6ST. Furthermore, IL6R+ macrophages displayed a transcriptional profile consistent with STAT3 (signal transducer and activator of transcription 3) activation and angiogenesis. Our data show that IL6 is both necessary and sufficient for choroidal angiogenesis. Macrophage-derived IL6 may stimulate choroidal angiogenesis via classical activation of IL6R+ macrophages, which then stimulate angiogenesis. Targeting IL6 or the IL6R could be an effective adjunctive therapy for treatment-resistant nAMD patients.


Assuntos
Corioide/irrigação sanguínea , Corioide/metabolismo , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Animais , Biomarcadores , Corioide/patologia , Neovascularização de Coroide/patologia , Neovascularização de Coroide/terapia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Camundongos , Monócitos/metabolismo , Receptores de Interleucina-6/metabolismo
12.
PLoS One ; 16(1): e0244743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411796

RESUMO

BACKGROUND & AIMS: Limited understanding of the role for specific macrophage subsets in the pathogenesis of cholestatic liver injury is a barrier to advancing medical therapy. Macrophages have previously been implicated in both the mal-adaptive and protective responses in obstructive cholestasis. Recently two macrophage subsets were identified in non-diseased human liver; however, no studies to date fully define the heterogeneous macrophage subsets during the pathogenesis of cholestasis. Here, we aim to further characterize the transcriptional profile of macrophages in pediatric cholestatic liver disease. METHODS: We isolated live hepatic immune cells from patients with biliary atresia (BA), Alagille syndrome (ALGS), and non-cholestatic pediatric liver by fluorescence activated cell sorting. Through single-cell RNA sequencing analysis and immunofluorescence, we characterized cholestatic macrophages. We next compared the transcriptional profile of pediatric cholestatic and non-cholestatic macrophage populations to previously published data on normal adult hepatic macrophages. RESULTS: We identified 3 distinct macrophage populations across cholestatic liver samples and annotated them as lipid-associated macrophages, monocyte-like macrophages, and adaptive macrophages based on their transcriptional profile. Immunofluorescence of liver tissue using markers for each subset confirmed their presence across BA (n = 6) and ALGS (n = 6) patients. Cholestatic macrophages demonstrated reduced expression of immune regulatory genes as compared to normal hepatic macrophages and were distinct from macrophage populations defined in either healthy adult or pediatric non-cholestatic liver. CONCLUSIONS: We are the first to perform single-cell RNA sequencing on human pediatric cholestatic liver and identified three macrophage subsets with distinct transcriptional signatures from healthy liver macrophages. Further analyses will identify similarities and differences in these macrophage sub-populations across etiologies of cholestatic liver disease. Taken together, these findings may allow for future development of targeted therapeutic strategies to reprogram macrophages to an immune regulatory phenotype and reduce cholestatic liver injury.


Assuntos
Atresia Biliar/metabolismo , Colestase/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Transcriptoma , Atresia Biliar/genética , Atresia Biliar/patologia , Criança , Pré-Escolar , Colestase/genética , Colestase/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Fígado/patologia , Masculino
13.
J Neuroinflammation ; 17(1): 341, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187533

RESUMO

BACKGROUND: Neovascular age-related macular degeneration (nAMD) commonly causes vision loss from aberrant angiogenesis, termed choroidal neovascularization (CNV). Macrophages are heterogeneous cells that are necessary for experimental CNV, present in human CNV samples, and can display diverse functions, which are dependent upon both their origin and tissue microenvironment. Despite these associations, choroidal macrophage heterogeneity remains unexplored. METHODS: We performed multi-parameter flow cytometry on wildtype (WT) and Ccr2-/- mice after laser injury to identify macrophage subtypes, and determine which subsets originate from classical monocytes. To fate map tissue resident macrophages at steady state and after laser injury, we used the Cx3cr1CreER/+ ; Rosa26zsGFP/+ mouse model. We reanalyzed previously published single-cell RNA-seq of human choroid samples from healthy and nAMD patients to investigate human macrophage heterogeneity, disease association, and function. RESULTS: We identified 4 macrophage subsets in mice: microglia, MHCII+CD11c-, MHCII+CD11c+, and MHCII-. Microglia are tissue resident macrophages at steady state and unaffected by laser injury. At steady state, MHCII- macrophages are long lived, tissue resident macrophages, while MHCII+CD11c- and MHCII+CD11c+ macrophages are partially replenished from blood monocytes. After laser injury, MHCII+CD11c- macrophages are entirely derived from classical monocytes, MHCII- macrophages originate from classical monocytes (90%) and an expansion of tissue resident macrophages (10%), and MHCII+CD11c+ macrophages are derived from classical monocytes (70%), non-classical monocytes (10%), and an expansion of tissue resident macrophages (20%). Single-cell RNA-seq analysis of human choroid found 5 macrophage subsets: two MHCII+CD11C- and three MHCII+CD11C+ populations. One MHCII+CD11C+ subset was 78% derived from a patient with nAMD. Differential expression analysis identified up-regulation of pro-angiogenic gene expression in one MHCII+CD11C- and two MHCII+CD11C+ subsets, including the disease-associated cluster. The upregulated MHCII+CD11C- pro-angiogenic genes were unique compared to the increased MHCII+CD11C+ angiogenesis genes. CONCLUSIONS: Macrophage origin impacts heterogeneity at steady state and after laser injury in mice. Both mice and human patients demonstrate similar macrophage subtypes. Two discrete pro-angiogenic macrophage populations exist in the human choroid. Targeting specific, pro-angiogenic macrophage subsets is a potential novel therapeutic for nAMD.


Assuntos
Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Heterogeneidade Genética , Macrófagos/metabolismo , Animais , Neovascularização de Coroide/patologia , Feminino , Terapia a Laser/efeitos adversos , Macrófagos/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
14.
J Vis Exp ; (160)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32628177

RESUMO

The innate immune system plays important roles in ocular pathophysiology including uveitis, diabetic retinopathy, and age-related macular degeneration. Innate immune cells, specifically mononuclear phagocytes, express overlapping cell surface markers, which makes identifying these populations a challenge. Multi-parameter flow cytometry allows for the simultaneous, quantitative analysis of multiple cell surface markers in order to differentiate monocytes, macrophages, microglia, and dendritic cells in mouse eyes. This protocol describes the enucleation of whole mouse eyes, ocular dissection, digestion into a single cell suspension, and staining of the single cell suspension for myeloid cell markers. Additionally, we explain the proper methods for determining voltages using single color controls and for delineating positive gates using fluorescence minus one controls. The major limitation of multi-parameter flow cytometry is the absence of tissue architecture. This limitation can be overcome by multi-parameter flow cytometry of individual ocular compartments or complimentary immunofluorescence staining. However, immunofluorescence is limited by its lack of quantitative analysis and reduced number of fluorophores on most microscopes. We describe the use of multi-parametric flow cytometry to provide highly quantitative analysis of mononuclear phagocytes in laser-induced choroidal neovascularization. Additionally, multi-parameter flow cytometry can be used for the identification of macrophage subsets, fate mapping, and cell sorting for transcriptomic or proteomic studies.


Assuntos
Olho/citologia , Olho/diagnóstico por imagem , Citometria de Fluxo , Fagócitos/citologia , Animais , Anticorpos/metabolismo , Células Dendríticas/citologia , Feminino , Corantes Fluorescentes/metabolismo , Lasers , Macrófagos/citologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/citologia , Monócitos/citologia , Fagócitos/imunologia
15.
Front Immunol ; 11: 230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174913

RESUMO

Neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) affect over one-half of SLE patients, yet underlying mechanisms remain largely unknown. We demonstrate that SLE-prone mice (CReCOM) develop NP-SLE, including behavioral deficits prior to systemic autoimmunity, reduced brain volumes, decreased vascular integrity, and brain-infiltrating leukocytes. NP-SLE microglia exhibit numerical expansion, increased synaptic uptake, and a more metabolically active phenotype. Microglia from multiple SLE-prone models express a "NP-SLE signature" unrelated to type I interferon. Rather, the signature is associated with lipid metabolism, scavenger receptor activity and downregulation of inflammatory and chemotaxis processes, suggesting a more regulatory, anti-inflammatory profile. NP-SLE microglia also express genes associated with disease-associated microglia (DAM), a subset of microglia thought to be instrumental in neurodegenerative diseases. Further, expression of "NP-SLE" and "DAM" signatures correlate with the severity of behavioral deficits in young SLE-prone mice prior to overt systemic disease. Our data are the first to demonstrate the predictive value of our newly identified microglia-specific "NP-SLE" and "DAM" signatures as a surrogate for NP-SLE clinical outcomes and suggests that microglia-intrinsic defects precede contributions from systemic SLE for neuropsychiatric manifestations.


Assuntos
Lúpus Eritematoso Sistêmico/complicações , Vasculite Associada ao Lúpus do Sistema Nervoso Central/genética , Transtornos da Memória/etiologia , Microglia/metabolismo , Transcriptoma , Animais , Aprendizagem por Associação , Barreira Hematoencefálica , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/imunologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/patologia , Macrófagos/metabolismo , Aprendizagem em Labirinto , Transtornos da Memória/genética , Transtornos da Memória/imunologia , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Mutantes , Teste do Labirinto Aquático de Morris , Tamanho do Órgão , Valor Preditivo dos Testes , Inibição Pré-Pulso , Reflexo de Sobressalto , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
16.
Eur Respir J ; 55(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31601718

RESUMO

Ontologically distinct populations of macrophages differentially contribute to organ fibrosis through unknown mechanisms.We applied lineage tracing, single-cell RNA sequencing and single-molecule fluorescence in situ hybridisation to a spatially restricted model of asbestos-induced pulmonary fibrosis.We demonstrate that tissue-resident alveolar macrophages, tissue-resident peribronchial and perivascular interstitial macrophages, and monocyte-derived alveolar macrophages are present in the fibrotic niche. Deletion of monocyte-derived alveolar macrophages but not tissue-resident alveolar macrophages ameliorated asbestos-induced lung fibrosis. Monocyte-derived alveolar macrophages were specifically localised to fibrotic regions in the proximity of fibroblasts where they expressed molecules known to drive fibroblast proliferation, including platelet-derived growth factor subunit A. Using single-cell RNA sequencing and spatial transcriptomics in both humans and mice, we identified macrophage colony-stimulating factor receptor (M-CSFR) signalling as one of the novel druggable targets controlling self-maintenance and persistence of these pathogenic monocyte-derived alveolar macrophages. Pharmacological blockade of M-CSFR signalling led to the disappearance of monocyte-derived alveolar macrophages and ameliorated fibrosis.Our findings suggest that inhibition of M-CSFR signalling during fibrosis disrupts an essential fibrotic niche that includes monocyte-derived alveolar macrophages and fibroblasts during asbestos-induced fibrosis.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Fibrose Pulmonar , Animais , Fibrose , Humanos , Macrófagos/patologia , Macrófagos Alveolares , Camundongos , Monócitos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Receptor de Fator Estimulador de Colônias de Macrófagos
17.
Invest Ophthalmol Vis Sci ; 60(15): 5059-5069, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31800964

RESUMO

Purpose: Beta-adrenergic receptor (AR) antagonists, like propranolol, inhibit angiogenesis in multiple ocular conditions through an unknown mechanism. We previously showed that propranolol reduces choroidal neovascularization (CNV) by decreasing interleukin-6 levels. Since macrophages are one of the central producers of interleukin-6, we examined whether macrophages are required for propranolol-driven inhibition of choroidal angiogenesis. Methods: We tested the anti-angiogenic properties of propranolol in the choroidal sprouting assay and the laser-induced CNV model. Bone marrow-derived monocytes (BMDMs) were added to the choroidal sprouting assay and Ccr2-/- mice were subjected to laser-induced CNV. Multi-parameter flow cytometry was performed to characterize the ocular mononuclear phagocyte populations after laser injury and during propranolol treatment. Results: Propranolol reduced choroidal angiogenesis by 41% (P < 0.001) in the choroidal sprouting assay. Similarly, propranolol decreased laser-induced CNV by 50% (P < 0.05) in female mice, with no change in males. BMDMs increased choroidal sprouting by 146% (P < 0.0001), and this effect was ablated by propranolol. Beta-AR inhibition had no effect upon laser-induced CNV area in female Ccr2-/- mice. MHCII+ and MHCII- macrophages increased 20-fold following laser treatment in wildtype mice as compared to untreated mice, and this effect was completely attenuated in lasered Ccr2-/- mice. Moreover, propranolol increased the numbers of MHCII+ and MHCII- macrophages by 1.9 (P = 0.07) and 3.1 (P < 0.05) fold in lasered female mice with no change in macrophage numbers in males. Conclusions: Our data suggest that propranolol inhibits angiogenesis through recruitment of monocyte-derived macrophages in female mice only. These data show the anti-angiogenic nature of beta-AR blocker-recruited monocyte-derived macrophages in CNV.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Angiofluoresceinografia/métodos , Macrófagos/patologia , Monócitos/patologia , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Corioide/metabolismo , Corioide/patologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Fundo de Olho , Imageamento Tridimensional , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Receptores Adrenérgicos beta/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
18.
J Autoimmun ; 96: 59-73, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30174216

RESUMO

Neuropsychiatric manifestations in lupus (NPSLE) affect ∼20-40% of patients. In the central nervous system, lipocalin-2 (LCN2) can promote injury through mechanisms directly linked to NPSLE, including brain barrier disruption, neurotoxicity, and glial activation. Since LCN2 is elevated in lupus and has been implicated in neuroinflammation, we investigated whether LCN2 is required for the pathogenesis of NPSLE. Here, we investigated the effects of LCN2 deficiency on the development of neurobehavioral deficits in the B6.Sle1.Sle3 (Sle1,3) mouse lupus model. Sle1,3 mice exhibited depression-like behavior and impaired spatial and recognition memory, and these deficits were attenuated in Sle1,3-LCN2KO mice. Whole-brain flow cytometry showed a significant increase in brain infiltrating leukocytes in Sle1,3 mice that was not reduced by LCN2 deficiency. RNA sequencing on sorted microglia revealed that several genes differentially expressed between B6 and Sle1,3 mice were regulated by LCN2, and that these genes are key mediators of the neuroinflammatory cascade. Importantly, LCN2 is upregulated in the cerebrospinal fluid of NPSLE patients across 2 different ethnicities. Our findings establish the Sle1,3 strain as an NPSLE model, demonstrate that LCN2 is a major regulator of the detrimental neuroimmune response in NPSLE, and identify CSF LCN2 as a novel biomarker for NPSLE.


Assuntos
Biomarcadores/metabolismo , Leucócitos/imunologia , Lipocalina-2/metabolismo , Vasculite Associada ao Lúpus do Sistema Nervoso Central/metabolismo , Inflamação Neurogênica/metabolismo , Animais , Barreira Hematoencefálica , Modelos Animais de Doenças , Feminino , Humanos , Lipocalina-2/antagonistas & inibidores , Lipocalina-2/genética , Vasculite Associada ao Lúpus do Sistema Nervoso Central/diagnóstico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Inflamação Neurogênica/diagnóstico , Regulação para Cima
19.
PLoS One ; 13(11): e0202722, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383765

RESUMO

Monocytes are amongst the first cells recruited into the brain after traumatic brain injury (TBI). We have shown monocyte depletion 24 hours prior to TBI reduces brain edema, decreases neutrophil infiltration and improves behavioral outcomes. Additionally, both lesion and ventricle size correlate with poor neurologic outcome after TBI. Therefore, we aimed to determine the association between monocyte infiltration, lesion size, and ventricle volume. We hypothesized that monocyte depletion would attenuate lesion size, decrease ventricle enlargement, and preserve white matter in mice after TBI. C57BL/6 mice underwent pan monocyte depletion via intravenous injection of liposome-encapsulated clodronate. Control mice were injected with liposome-encapsulated PBS. TBI was induced via an open-head, controlled cortical impact. Mice were imaged using magnetic resonance imaging (MRI) at 1, 7, and 14 days post-injury to evaluate progression of lesion and to detect morphological changes associated with injury (3D T1-weighted MRI) including regional alterations in white matter patterns (multi-direction diffusion MRI). Lesion size and ventricle volume were measured using semi-automatic segmentation and active contour methods with the software program ITK-SNAP. Data was analyzed with the statistical software program PRISM. No significant effect of monocyte depletion on lesion size was detected using MRI following TBI (p = 0.4). However, progressive ventricle enlargement following TBI was observed to be attenuated in the monocyte-depleted cohort (5.3 ± 0.9mm3) as compared to the sham-depleted cohort (13.2 ± 3.1mm3; p = 0.02). Global white matter integrity and regional patterns were evaluated and quantified for each mouse after extracting fractional anisotropy maps from the multi-direction diffusion-MRI data using Siemens Syngo DTI analysis package. Fractional anisotropy (FA) values were preserved in the monocyte-depleted cohort (123.0 ± 4.4mm3) as compared to sham-depleted mice (94.9 ± 4.6mm3; p = 0.025) by 14 days post-TBI. All TBI mice exhibited FA values lower than those from a representative naïve control group with intact white matter tracts and FA~200 mm3). The MRI derived assessment of injury progression suggests that monocyte depletion at the time of injury may be a novel therapeutic strategy in the treatment of TBI. Furthermore, non-invasive longitudinal imaging allows for the evaluation of both TBI progression as well as therapeutic response over the course of injury.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Hidrocefalia/patologia , Monócitos/patologia , Substância Branca/patologia , Animais , Lesões Encefálicas Traumáticas/complicações , Progressão da Doença , Humanos , Hidrocefalia/etiologia , Hidrocefalia/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL
20.
Front Immunol ; 9: 2189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319641

RESUMO

About 40% of patients with systemic lupus erythematosus experience diffuse neuropsychiatric manifestations, including impaired cognition and depression. Although the pathogenesis of diffuse neuropsychiatric SLE (NPSLE) is not fully understood, loss of brain barrier integrity, autoreactive antibodies, and pro-inflammatory cytokines are major contributors to disease development. Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator, prevents lymphocyte egress from lymphoid organs through functional antagonism of S1P receptors. In addition to reducing the circulation of autoreactive lymphocytes, fingolimod has direct neuroprotective effects such as preserving brain barrier integrity and decreasing pro-inflammatory cytokine secretion by astrocytes and microglia. Given these effects, we hypothesized that fingolimod would attenuate neurobehavioral deficits in MRL-lpr/lpr (MRL/lpr) mice, a validated neuropsychiatric lupus model. Fingolimod treatment was initiated after the onset of disease, and mice were assessed for alterations in cognitive function and emotionality. We found that fingolimod significantly attenuated spatial memory deficits and depression-like behavior in MRL/lpr mice. Immunofluorescent staining demonstrated a dramatic lessening of brain T cell and macrophage infiltration, and a significant reduction in cortical leakage of serum albumin, in fingolimod treated mice. Astrocytes and endothelial cells from treated mice exhibited reduced expression of inflammatory genes, while microglia showed differential regulation of key immune pathways. Notably, cytokine levels within the cortex and hippocampus were not appreciably decreased with fingolimod despite the improved neurobehavioral profile. Furthermore, despite a reduction in splenomegaly, lymphadenopathy, and circulating autoantibody titers, IgG deposition within the brain was unaffected by treatment. These findings suggest that fingolimod mediates attenuation of NPSLE through a mechanism that is not dependent on reduction of autoantibodies or cytokines, and highlight modulation of the S1P signaling pathway as a novel therapeutic target in lupus involving the central nervous system.


Assuntos
Depressão/imunologia , Cloridrato de Fingolimode/farmacologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/psicologia , Lisofosfolipídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Autoanticorpos/imunologia , Técnicas de Observação do Comportamento , Comportamento Animal/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/imunologia , Encéfalo/fisiologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Citocinas/imunologia , Depressão/tratamento farmacológico , Depressão/psicologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Feminino , Cloridrato de Fingolimode/uso terapêutico , Humanos , Vasculite Associada ao Lúpus do Sistema Nervoso Central/tratamento farmacológico , Vasculite Associada ao Lúpus do Sistema Nervoso Central/genética , Vasculite Associada ao Lúpus do Sistema Nervoso Central/imunologia , Lisofosfolipídeos/imunologia , Camundongos , Camundongos Endogâmicos MRL lpr , Microglia/efeitos dos fármacos , Microglia/imunologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/imunologia , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/imunologia , Esfingosina/imunologia , Esfingosina/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA